Billingshurst Primary School

Long Term Maths Plan

	Week 1 Week 2 Week 3		Week 7
$\begin{aligned} & N \\ & \underset{\sim}{z} \\ & \frac{\sim}{\alpha} \\ & \sim \end{aligned}$	Multiplication: 2, 4, 8 times table RtP: - 3NF-2 Page 100 - 3MD-1 Page 117 - 3NF-3 Page 103 Prior Learning RtP: SPINES: - 1NF-2 Page 26 2.7 Times tables: 2,4 and 8 and the relationship between them Small Steps: Pupils represent counting in fours as the 4 times table Pupils use knowledge of the 4 times table to solve problems Pupils explain the relationship between adjacent multiples of four Pupils explain the relationship between multiples of 2 and multiples of 4 Pupils use knowledge of the relationships between the 2 and 4 times tables to solve problems Pupils represent counting in eights as the 8 times table Pupils explain the relationship between adjacent multiples of eight Pupils explain the relationship between multiples of 4 and multiples of 8 Pupils use knowledge of the relationships between the 4 and 8 times tables to solve problems 0 Pupils explain the relationship between multiples of 2,4 and multiples of 8 1 Pupils use knowledge of the relationships between the 2,4 and 8 times tables to solve problems 2 Pupils use knowledge of the divisibility rules for divisors of 2 and 4 to solve problems Pupils use knowledge of the divisibility rules for divisors of 8 to solve problems 4 Pupils scale known multiplication facts by 10 5 Pupils scale division derived from multiplication facts by 10 Count from 0 in multiples of 4, 8,50 and 100 . Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	Column subtraction and Money RtP: 3AS-2 Page 109 SPINES: 1.21 Algorithms: column subtraction Small Steps: 1 Pupils identify the minuend and the subtrahend in column subtraction 2 Pupils explain the column subtraction algorithm 3 Pupils subtract from a 2-digit number using column subtraction with exchanging from tens to ones 4 Pupils subtract from a 3-digit number using column subtraction with exchanging from hundreds to tens (1) 5 Pupils subtract from a 3-digit number using column subtraction with exchanging from hundreds to tens (2) 6 Pupils evaluate the efficiency of strategies for subtraction 7 Use inverse operations to check calculations. 8. Count money (in pence) 9. Count money (in pounds) 10. Identify the value of pounds and pence using different representations 11. Convert pounds and pence 12. Add money 13. Subtract money 14. Give change When exploring money: apply the same written and mental calculation strategies explored so far, e.g. bridging, complements to 100 p/ $£ 1$ etc, column methods. Subtract numbers with up to 3-digits, using the column method with resources to regroup units, tens and hundreds Jse inverse operations to check answers. Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction. Add and subtract amounts of money to give change, using both $£$ and in practical contexts	

		Week 5	Week 7
$\begin{aligned} & \text { r } \\ & \text { ه } \\ & \dot{\Sigma} \\ & \underset{\sim}{\Sigma} \\ & \frac{\square}{n} \end{aligned}$	Unit fractions RtP: - 3F-1 Page 120 - 3F-2 Page 124 SPINES: 3.1 Preparing for fractions: the part whole relationship 3.2 Unit fractions: identifying, representing and comparing Small Steps: Pupils identify a whole and the parts that make it up Pupils explain why a part can only be defined when in relation to a whole Pupils identify the number of equal or unequal parts in a whole Pupils identify equal parts when they do not look the same (i) Pupils explain the size of the part in relation to the whole Pupils construct a whole when given a part and the number of parts Pupils identify how many equal parts a whole has been divided into Pupils use fraction notation to describe an equal part of the whole Pupils represent a unit fractions in different ways Pupils identify parts and wholes in different contexts (i) Pupils identify parts and wholes in different contexts (ii) Pupils identify equal parts when they do not look the same (ii) Pupils compare and order unit fractions by looking at the denominator Pupils identify when unit fractions cannot be compared Pupils construct a whole when given one part and the fraction that it represents Pupils use knowledge of the relationship between parts and wholes in unit fractions to solve problems Pupils identify the whole, the number of equal parts and the size of each part as a unit fraction Pupils quantify the number of items in each part and connect to the unit fraction operator Pupils calculate the value of a part by using knowledge of division and division facts Pupils calculate the value of a part by connecting knowledge of division and division facts with finding a fraction of a quantity Pupils find fractions of quantities using knowledge of division facts with increasing fluency Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.	Non-unit fractions RtP: - 3F-1 Page 120 - 3F-3 Page 127 - 3F-4 Page 131 SPINES: Non-unit fractions: identifying, representing and comparing 3.4 Adding and subtracting within one whole Small Steps: Pupils explain that non-unit fractions are composed of more than one unit fraction Pupils identify non-unit fractions Pupils identify the number of equal or unequal parts in a whole Pupils use knowledge of non-unit fractions to solve problems Pupils use knowledge of unit fractions to find one whole Pupils place fractions between 0 and 1 on a numberline Pupils use repeated addition of a unit fraction to form a non-unit fraction Pupils use repeated addition of a unit fraction to form 1 Pupils compare using knowledge of non-unit fractions equivalent to one 10 Pupils compare non-unit fractions with the same denominator 11 Pupils compare unit fractions 12 Pupils compare fractions with the same numerator 13 Pupils add up fractions with the same denominator 14 Pupils add on fractions with the same denominator 15 Pupils add fractions with the same denominator using a generalised rule 16 Pupils subtract fractions with the same denominator 17 Pupils identify the whole, the number of equal parts and the size of each part as a unit fraction 18 Pupils explain that addition and subtraction of fractions are inverse operations 19 Pupils subtract fractions from a whole by converting the whole to a fraction 20 Pupils represent a whole as a fraction in different ways and use this to solve problems involving subtraction	

